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Path-integral expressions of periodic systems are formulated by introducing the concept of the wind-
ing number. Computer simulations and a high-temperature expansion demonstrate the quantum effect
of the winding number. We then examine the effects of the winding number on the angular and radial
distribution functions in two-dimensional polar coordinates both analytically and numerically.

PACS number(s): 02.70.Lq, 05.30.—d

I. INTRODUCTION

There are many systems which are described by the
periodic coordinates or periodic boundary conditions: a
finite system with periodic boundary conditions is used to
simulate a bulk system [1], the electronic motion in a
crystalline solid is intrinsically periodic under the adia-
batic assumption because of the lattice structure, and any
curvilinear coordinate involves a degree of freedom
which is periodic. The path-integral formulation of these
systems introduces winding numbers [2]. This paper is
devoted to investigate the winding-number effect in
path-integral Monte Carlo simulations.

In Sec. II we rewrite the conventional form of path in-
tegrals with winding numbers into a computationally
convenient expression. A high-temperature expansion
derived in Sec. III suggests that the distribution function
including winding numbers is smoother than the distribu-
tion without winding numbers. And this conclusion is
further confirmed by Monte Carlo (MC) simulation re-
sults in Sec. VI. The winding-number effect is essentially
a quantum phenomenon which helps enhance the tunnel-
ing effect in periodic systems.

There have been several simulations for systems with
rotational degrees of freedom [3-5]. In the approach of
Marx and co-workers, the winding-number distribution is
sampled in a primitive MC fashion by introducing a trial
move with a change of winding number n to n —1 or
n +1. The difficulties associated with their approach are
the low acceptance, unless at extremely low tempera-
tures, and the additional relaxation period after each
winding-number jump. The first method proposed in Sec.
II treats the winding-number terms as a weighting factor
and is thus an efficient algorithm. We also suggest Gauss-
ian sampling for the winding number. The formalism
presented in this paper factors the additional kinetic-
energy term due to the winding number and thus greatly
benefits Monte Carlo simulations and analytical analysis.
The focus of the paper is to investigate the effects intro-
duced by winding-number terms. This requires an
effective algorithm to sample the subspace designated by
the winding number and is difficult to accomplish by the
primitive method.

Essentially, the rigid rotator model is a one-
dimensional problem. The polar coordinate systems to be
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studied in Secs. IV and V have two degrees of freedom
which have not been well studied by simulations previ-
ously. In the case of polar coordinates, the periodicity of
the angular part is intrinsic [2,6-8]. We examine the
winding-number effect of a two-dimensional harmonic os-
cillator in Sec. VI and find that the angular distribution is
smoother and the radial distribution more populated to-
wards the center. This observation confirms the analyti-
cal prediction.

The present paper contains only simple models to
demonstrate the quantum effects introduced by the
winding-number terms in path integrals. Nevertheless,
the analysis and conclusions are general, and the simula-
tion schemes can be applied to more complicated physi-
cal systems.

II. THE PERIODIC PATH-INTEGRAL PROPAGATORS

Let us first consider a system having one degree of free-
dom x which is periodic on the interval [0,L]. One such
example is a particle constrained to a circle. The Feyn-
man representation of quantum-statistical mechanics
gives the general Green’s function of the Bloch equation
in the form of a functional integral [9],

i=p -
prx,x";B)= lim [] fX deipl(x,v,x,, LE)
Posoc U =0

C =

XAxlx My =y 2.1
X,

where e=f/P is the reduced Euclidean time. We shall
first obtain the explicit expression of short-time propaga-

tor for the periodic boundary condition using the Fourier
transformation

pl‘(x,»,x,.,,;e):i 2 exp
L{'*‘ =

X exp

2l

L

T VitV ||
2m 2

il (x;—x; )27 | |
3 ‘ , (2.2)

where / is an integer. The Poisson summation leads to
the following formula:
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p m |7
L ’ = 1i
(x,x’;8)= lim
P B P"wil;ll 27T‘ﬁ26
L bt n.
X i —eS;’
fo dx; ) =2_w exp(—eS; ")
X{xlx s, = s (2.3)

where we ‘designate an integer n; for each short-time
propagator and where the Euclidean action S; has the
form

Vit

V,+
(xi—x,.+1+n,.L)2+e—’—5——. 2.4)

m
2et?

Although the position and potential are only defined in
the domain of [0,L], we can simply extend both to the
whole axis, which implies a periodic potential, that is,

V(x+nL)=V(x) . (2.5)

n,
P —
S[ -

We shall redefine the intermediate coordinates as
x;=x1,
x,=x5+n,L ,
x3=x3+n,L+n,L , (2.6)
x4=x4+n,L +n,L+n,L ,

Now the limits of the integral can be extended to
infinities and the potential part remains the same due to
the periodicity of the potential. And thus we obtain the
final expression

pHx,x;B)= 3 plx,x'+nL;B), (2.7

h=—oo

where n is the winding number defined as n =37_n,,
and p is the ordinary path integral defined in the whole
space.

It is worthwhile to discuss the physical interpretation
of the winding number [10,11]. The Feynman path in-
tegral is a summation of all possible paths connecting the
initial and final position weighted by e ~5 where S is the
Euclidean action. As we restrict the definition of the
coordinate to one cycle of L, the history of paths is ill
defined. In order to keep track of a path, we shall extend
the coordinates to the whole axis.

However, as we redefine the domain of the coordinate,
there are possible paths with different end points which
correspond to the same observables. The physical value
is taken as x —[x/L]L, where [ ] denotes the integer
part. These paths can be identified by the winding num-
ber n. It is proper to view n as an additional degree of
freedom.

The stationary phase approximation allows us to write
(2]

172

1 <')ZSCI —-S

_— cl
27 dxox’ ’ 2.8)

plx,x";B)= 3,

where S (x,x’;B,n) is the classical action along the clas-
sical path which circles around » times. (For positive n,
the circle is counterclockwise; for negative n, the circle is
clockwise.) Therefore, the winding number helps identify
the trajectory of a particular path.

At this stage, it is quite straightforward to construct
path integrals for some other boundary conditions
[12,13]. As an example, a particle confined in a hard wall
box,

V(x), 0<x=<L

V= o, elsewhere . 2.9)

The path integral for this system is formulated by insert-
ing the completeness relationship,
- 2 THX; 4+

B )= in L (2.10)
X; le_,,:E_stm L sin— . .

After algebraic manipulation, we have the propagator in
the box

@

pbox(x’x';B)—_- 2

n=—o

[p(x,x"+nL;B)

—p(—x,x'+nL;B)]. (2.11)

This form assures that the propagator vanishes when one
of the end points is at the boundary. Taking L to be
infinity, we obtain a path integral in the half-space.

Recently, we derived a new quantum propagator for
hard-sphere cavity systems where a winding number has
to be introduced so that contributions from different
winding number terms cancel each other at the hard-
sphere boundary [14]. In this case, the winding number
is interpreted as the number of reflections by the hard-
sphere boundary.

We can develop another form of the periodic path-
integral propagator which is more practical in perform-
ing Monte Carlo simulations. We start from the discre-
tized Feynman path integral with a definite winding num-
ber n. The canonical ensemble partition function for a
quantum particle is taken to be the trace of the Euclidean
time propagator. For this reason, we will simply study
the diagonal element. Shifting the coordinate according
to

(i—1)

[=x,+———nL 2.12
x/=x; " (2.12)
leads to the action
P r n’L?
Sh=— (x!=x! 4 P+ —
222 ,.g, P 212
o o =)
TBXV|xit——Fp—nL|, 2.13)
i=1
where A is the thermal wavelength given by
2
}\2=M . (2.14)
m

And the propagator takes the same form for all n,
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p(xg,xg+nL;B)= lim

P— o

_qn
.’e N

X
z‘l;ll 2mA?

X {xolxi )1,
p+1

xg
(2.15)

Henceforth, we replace x; by x; without causing any con-
fusion.

Obviously, the contribution from the winding number
n is characterized by the exponential factor of
exp(—n2L?/2A%) and is important only if the thermal
wavelength A has the same order as the periodic length L.

The new form of S" suggests an algorithm for Monte
Carlo simulations. The configurations are sampled ac-
cording to the ordinary path-integral propagator e ~°.
All the expectation values are taken as summations of n
weighted by e 25", Here AS"=S,—S, contains the
difference between the potential part and the damping
factor n2L2/2A%. We can truncate the summation over n
for nL /A >>1.

An alternative Monte Carlo method is suitable for ex-
tremely low temperature when the summation of n be-
comes lengthy. We simply take n as an additional vari-
able sampled from exp(—n2L?/2A%). The Gaussian
width ny=A/L is so large that we could actually take it
as a variable which can be generated from the continuous
Gaussian distribution.

Finally, we shall introduce the energy estimators. For
a specific n, the virial estimator is

vl n’L?
"B 2B
) i—1
+ —V|x;+ L
21" ) ox; i P
+1 2 v |x+itnL 2.16)
and the primitive estimator is
p_ P 1 2
€ =T — (x;—x; 4 )
2B 2A%B 2 '
n3L?
12“ +1 2V |x “Lar (2.17)
2B i

The total energy is the summation of €,
7AS'1
e .

weighted by

III. HIGH-TEMPERATURE APPROXIMATION

It is possible at this point to present a high-
temperature approximation of the periodic path-integral
propagator. In the limit P— oo, we write the continuous

limit of Eq. (2.15) as
plx,x +nlL)= fx[i)x]e -t (3.1

where the Euclidean action S” takes the form of

( 2
e n’L?
222 Yo | du %
+[3’f Vix(u)+unL)du , (3.2)
and the notation
f [Dx]= llm
P
P 1/2
1
X dx (x /x|, | =,
[l;Il 277'}\,2 f ! P+l
(3.3)

represents an integration over all the paths starting at x;
and ending at x .

There is a widely used high-temperature approxima-
tion which is based on the moment expansion of an aver-
age of exponents, that is,

(e/y=exp[{fI+LfD—=( I+ -]. (34

Expanding the path in terms of the Fourier series [15,16],

x(u)=xy+x(u), (3.5)
X(u)= 3 agsinlkmu), (3.6)

k=1

diagonalizes the kinetic-energy part. The first moment of
potential is the average potential
1/2

(V)= dx(u)
27 (u) f
22
X
X exp— N
PR
XV(xq+%x(u))du (3.7)
where the Gaussian width is given by
Au)=ru(1—u) . (3.8)

The above expression gives the lower bound of the high-
temperature approximation for n =0 [15,17,18].

For n50, though the thermal wavelength is small, the
path winds around the period L. This means we have to
Fourier analyze the path with respect to period L,

flV(xO+nLu+x )du—f 2 Vi (x,+nLu)
0

m =0

=(m)

du

m!

:fl S‘I i I7<ml i2mnul
0, =0

=im)

X du

m!
(3.9)

where the Fourier coefficients are
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pim=n fol/nV('")(xO +nLu)e ~2™Hdy
= [ V" xo+ Lu'de 2 du! (3.10)

We have made use of the periodic property of potential
so that there is no dependence on the winding number 7.
Again, we take the average of the potential,

(V)—f 2 2kk'Vﬂ’” (xo+nLu)[AMu) P du

=3 3 PPkl (3.11)
k=01l=—o
where K X is given by
Kjy= [ ey —u)kdu | (3.12)
0
Let us evaluate K ,{‘,, for nl#0,
Kr?lz
1= 2
" (2mnl)?’
224
" Qe
(3.13)
We work out the expansion to order A? giving
(V=P + W27
A ortoe " @
+—2?fo[V (xo+Lu")— VY]
X[u'(1—u')—¢ldu’, (3.14)
where the following identity is employed,
o =2
2cos(2mu'l)=u'(1—u')—1, (3.15)
1§1 (2#1)2 ¢
and where
k= fo‘Vk(x0+Lu')du' (3.16)

is the spatial average of the potential or its derivative.
Whereas n =0 is an exception,

(V)Y=V(xg)+ LAV P(x,) (3.17

which can be easily obtained from Eq. (3.7) [17].

It is quite obvious to see the physical implications of
this approximation. The effective potential w1th winding
numbers contains two global terms ¥, and 3. The lead-
ing local term in Eq. (3.14) is of the order of
(1/nHAL?V™, the amplitude of which is much smooth-
er as a function of the position than that of V. So we can
draw the conclusion that the effect of winding paths is to
reduce the variation in the effective potential. The distri-
bution curve exhibits a smoother or less-structured
J

—€T,; i

e '= ¥ exp
n.=
1

m
—(r,—r; P+ —
2#%%€ + 2ﬁ €

riri1(0;—0; L +2mn; ) —

behavior. A quantum effect such as tunneling will be in-
creased.

IV. TWO-DIMENSIONAL PATH INTEGRALS
IN POLAR COORDINATES

Feynman’s path-integral representation of quantum-
statistical mechanics is generally expressed in the form of
a functional integral in Cartesian coordinates. It is a nat-
ural extension to formulate path integrals in curvilinear
coordinates, particularly in polar coordinates. There
have been successful efforts to evaluate the path integral
in polar coordinates [6—8]. The purpose of this section is
to transform the Cartesian functional integral to the po-
lar functional integral which includes winding numbers
explicitly and to examine the effect of winding numbers.

We focus on two-dimensional systems. The propagator
in Euclidean time is expressed as

p(r,r’;B)=ffox fy'i)y e TtV
x y
V; is the

where € is the short-time parameter e=B/P, ¥,
potential-energy component, and T is the kinetic-energy
component.

We decompose the kinetic-energy part of the short-
time propagator into Bessel functions and angular har-
monics. The distance between two vectors in polar coor-
dinates is

(Ar)*=(x;—x

(4.1)

i+1)2+(yi _J’i+1)2
_zriri+1 COS(AG)

where A0=0,—0, .
energy component is

F(Ae)zeacosAG

where @ =(mP /B#)r;7; 4.
leads to

=ritrly 4.2)

The relevant part in the kinetic-

(4.3)

The familiar expansion of 6

F(A0)= i 81 (a) , 4.4)

I=—w

where I;(a) is the modified Bessel function with imagi-
nary argument. In the limit of P— o0, we can use the
asymptotic form of Bessel functions,

172

1
a—=-(1"—1)

lim I;(z)= a

a— o

exp 4.5)

2ma

After a Poisson transformation on integer 1, F becomes

a+ 1 i —a(A6+2mn)? /2
— e .

lim F(AQ)=
Pl_l:IL( )= exp %

n=-—oo
(4.6)

Substitution of the above identity into the kinetic-energy
component yields

2
et ] 4.7)

8mr;r; 4




886 JIANSHU CAO 49

Now we have obtained the short-time propagator in
polar coordinates. Because angle 6 is a periodic coordi-
nate with a period of 27, the same treatment Eq. (2.6)
which we utilize to handle the periodic coordinate can be
applied here. As the result of the above derivation, we
have the final form of the path integral in polar coordi-
nates,
plr,i’;B)= 3 Plim

n=-—x
o P P < ‘4’”
X H1 Eﬁfo rdr, [ do.e ’ :

P=

Xelr)

po =0 2mn
(4.8)
in which
n_-,”li _ 2 _”1_ _ 2
S'v_Zﬁze(ri r,'+1)+2ﬁ26"f’f»»1(9f 0; 1)
Vir)+ Vi, ) 2|
+e ! AL . (4.9)
2 8mrr;

The distinct property of the polar-coordinate path in-
tegral derives from the angular part. The fact that angle
0 is a periodic coordinate introduces the winding number

n. The additional potential term of —#*/8mr? is purely
a quantum effect [6]. It comes from the expansion of
cos(A6) in the kinetic-energy term

cos(AQ)=1—1A6°+ LAG*+ - - (4.10)
where the first two terms automatically give the classical
correspondence of the kinetic energy, that is,
Ax*+Ay’—Art+r2A6% However, to keep the same or-
der of ¢ in the quantum propagator, a higher-order
correction in A6 is necessary. Actually, a simple estima-
tion gives the right answer [7,8],

(o rim A6 /6t > ~€1mr:/6ﬁ:£)<‘AH)4) :eﬁze/llmr2

{ 4.11)

The quantum term takes the form of an inverse square
attraction potential which will cause a divergence in the
classical limit. The above derivation is only valid in the
limit of P~ c. This implies that this term should be in-
cluded only when the number of beads P is large enough
to demonstrate the subtle quantum attributes.

V. THE CENTRAL FORCE

The above formula Eq. (4.8) is quite general and can be
reduced to the central force path integral after the in-
tegration of the angular part is carried out. As the poten-
tial is not a function of the angular variable, the angular
part can be separated out as

» P [ p 172 . }
e P . _ \

G(riPB) ,sz ,I;Il lZTrkz ”.fo d0.exp i—ﬁrﬂ[ 106, (9[_1)2 (9\9&\%‘7‘:9%2"”. (5.1)
Let us define a new set of angles, After performing the angular integrals, we arrive at

6,=6,.,—6,, (5.2) = oo

I i+1 i G(rI,B): E expi__ %2 l_ﬁ___ e iAO] \/1_' )

where the index i runs from / to P. Because tbe two end [=me i mriric | rr
points are fixed, there must be a constraint on 6, (5.6)

lgé:/wﬂm , (5.3)
i=1
where AG=6"—0. The change of variables yields
. P p 12
G (r;;3) n;x,ﬂ ZT;-); ; |
X f(fﬂdé,- exp ~2—‘i5r,-r,- H@? :
X8 [2 0—AO—27n
| (5.4)
where the 8 function can be written as
5[ 0—A6—2mn I
n J
= il? [ Tdoe 2,080 (s s

And the whole propagator reads as

*

plr,rsp)= 3

[ ==

(5.7)
where the action is
I_ - 2
S'= —(r,—ri )"
21 242 ”
P Vr)+V(r ) 5212 — i
+2@} U el V2 )1
= P 2 2mrir; oy

i

which is exactly the expression obtained before in anoth-
er way. The radial part is a path integral with additional
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potentials resulting from the angular part. The term
I?#2/2mr? is the effective angular momentum potential
and [ is the quantum number.

We now investigate the radial contribution of each
winding number. For a specific n, the angular part is

npogy—= L [
(r;B) 27Tf_wdw

L e—i(A9+21rn)a)
Vrr'
P B thZ

— 5.9
\ P 2mrir; 5.9)

X exp—

It is easy to show that the effective potential appearing in
the radial part of the path integral is

=2

=(A9+27m)2ﬁ (5.10)
where 72 is defined as
1 P
72 = ; 2 (5.11)

Obviously, as the winding number n increases, the
effective potential tends to draw the radial distribution
closer to the origin.

It is of interest to generalize the results of two-
dimensional polar coordinates to higher-dimensional cur-
vilinear coordinates. For the spherical coordinates the
derivation is straightforward.

V1. EXAMPLES

We make a comparison of the result obtained using the
ordinary path-integral Monte Carlo and periodic path-
integral Monte Carlo with winding numbers. This will
demonstrate the importance of including winding num-
bers in the periodic path integrals. The configurations

A —PIMC
02t . Exact
-03 1 1
>
Qo *,
T -04 \
=]
=
=051 ‘\ 7
i\.
=06 . E’_“\r
—-0.7 1 N L N 1 1
0 1 2 3 4 5 6
n
max

FIG. 1. The average energy E of a quantum particle in poten-
tial ¥ =5cosx as a function of the cutoff n,, in the winding-
number summation Eq. (2.7). The dotted line is the exact result.

. —PIMC
----- Exact
-2.05 | 1
= \
5-215F \ ]
=]
=
L \'
\'
—,
-2.25 Tee—
__235 1 " Il L 1 2 1 1 L 1
0 2 4 6 8 10
n

FIG. 2. The same plot as Fig. 1 except for the potential
V =10cosx.

are generated by the staging method from e So [19,20].
For a particular winding number n, we shift coordinates
according to Eq. (2.12) and weight the configuration by

~("=s7) The full path integral shall include a summa-
tion of the contributions from all the winding-number
terms, Eq. (2.7). However in practice, we set a cutoff
Npax for the summation of winding numbers, i.e.,
—Hpax <N =ng,,. Terms beyond the cutoff are too small
to be counted.

For the sake of simplicity, we choose a cosine potential
defined on a circle, V=V,cos(27x), 0=x =1. The

1.75 - I : : : :
1.50

1.25

T

> .
= 1.00

0.75

0.50 ¢

0.25 e '

FIG. 3. The distribution function of a quantum particle in
potential ¥ =5 cosx. The solid curve is the exact result with the
winding-number summation. The dashed curve is the result
without the winding-number summation.
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2.5 T - ‘ T

.0

@
(S
T

FIG. 4. The same plot as Fig. 3 except for the potential
V =10 cosx.

relevant constants are taken to be mass=1.0, #=1.0,
B=1.0. Some trial simulations indicate that a bead num-
ber of 30 to 50 is enough to achieve convergence. The
number of beads moved in each trial move is adjusted to
yield acceptance of about 50%. Data are collected over
10° passes.

We plot the average energy E versus the cutoff of the
winding-number summation n_,,. The dotted line is the
exact result calculated from the energy eigenvalues solved
on a basis set of e’>™™*, The virial estimator Eq. (2.16) is
employed to obtained the average energies: Fig. 1,
Vy=5; Fig. 2, V3=10. Both curves show the obvious
quantum effect of winding numbers. The ordinary path-
integral Monte Carlo does not provide the correct ener-

0.050 T T T T T T T

0.035

T

dis(8)

0.020

0.005 1 1 1 1 1 1 1

FIG. 5. The angular distribution of a two-dimensional linear
harmonic oscillator with frequencies v, =3.0 and o, =1.0. The
solid curve is the exact result and the dashed curve is the result
without the winding-number summation.

0.05

T
A

0.04

T

T

0.03

dis(r)

0.02 |-

T

0.01

1 " 1 " 1 1

0 0.5 1.0 1.5 2.0 2.5 3.0
r

FIG. 6. The radial distribution of a two-dimensional linear
harmonic oscillator with frequencies w, =3.0 and w, =1.0. The
solid curve is the exact result and the dashed curve is the result
without the winding-number summation.

gy. As we increase n,,, the average energy approaches
the value as we expected.

We also plot the spatial distribution for the same po-
tential. Figure 3 is for the case of V;=10.0; Fig. 4 is for
the case of V;=5.0. The solid curve is the distribution
after taking the summation over the winding-number
terms up to n,, = 10, which approximates the exact dis-
tribution, whereas the dashed curve is for the ordinary
path-integral Monte Carlo, which is a special case of the
zeroth winding-number term. The fact that the solid
curve is smoother than the dashed curve clearly supports
our prediction in the previous analysis of the high-
temperature approximation [see Egs. (3.14) and (3.17)].
The nonzero winding-number terms help to increase the
quantum tunneling effect.

A two-dimensional linear harmonic oscillator is stud-

0.08 T T T T T T

0.06

T

0.02 -

FIG. 7. The same plot as Fig. 5 except for the frequencies
©,=10.0and w, =1.0.
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0.06 T T T T T T T
0.05}
0.04 -

%0.03 r

d

T

0.02

0.01 ¢

FIG. 8. The same plot as Fig. 6 except for the frequencies
o, =10.0 and 0, =1.0.

ied to illustrate the winding-number effect in the polar
coordinate path integral. The parameters #, 3, and mass,
are set to be one. The potential takes the form of
V=1w2x>+1lely? in which the ratio of the two fre-
quencies indicates the asymmetry of the potential. Fig-
ures 5 and 6 are the radial distribution and the angular
distribution, respectively, for the case of «,=3.0,
0,=1.0. The solid curve is the distribution of the
correct periodic path integral with winding numbers.
The dashed curve is the distribution of the ordinary path
integral. Figures 7 and 8 are the same plots for the case

of v, =10.0, o, =1.0.

We generate configurations of a close chain by the
staging Monte Carlo in the Cartesian coordinates. The
winding number is calculated for each configuration.
Only those with n =0 contribute to the dashed curve.
The angular distribution is consistent with our analysis
above. And the radial distribution also supports our dis-
cussion in Sec. V where we state that the winding-number
terms tend to draw the radial distribution towards the
origin in the case of central force. This conclusion de-
rived for the central force can be generalized to noncen-
tral force. It can also be noticed that this tendency in-
creases with the asymmetry of the potential.

We have illustrated the quantum aspects of the wind-
ing number. Such effects become important for a highly
quantized system. As an example, low-temperature hy-
drogen and its isotopes can be modeled as a system of rig-
id rotators with weak long-range interactions and strong
short-range repulsions. We expect a smoother angular
correlation function and a more compact radial correla-
tion function if the winding number is incorporated in
the simulations. Moreover, the concept of winding num-
ber is essential in formulating the path integral of spin [2]
and the propagator for a quantum particle inside a hard
cavity [14].
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